If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+692x+42=1974
We move all terms to the left:
-16x^2+692x+42-(1974)=0
We add all the numbers together, and all the variables
-16x^2+692x-1932=0
a = -16; b = 692; c = -1932;
Δ = b2-4ac
Δ = 6922-4·(-16)·(-1932)
Δ = 355216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{355216}=596$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(692)-596}{2*-16}=\frac{-1288}{-32} =40+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(692)+596}{2*-16}=\frac{-96}{-32} =+3 $
| 2x+2x+x-75=-5x+125 | | 15y+10y=14 | | 4-4m=-13 | | .5x+8=11 | | 12+3u=7u | | -2x-37=-6x+15 | | 3.55j-7=-40 | | 3(x+9)+2x=5(x+10) | | 3v+48=11v | | 160=14x+6x | | -50=c/10−58 | | 9x+12+102=180 | | 20=(3x)+(x+2) | | 4(y-8)=-32 | | 5(x-15)=75 | | 2x+4+5×-8=24 | | 3(x+3)=2(2x+4) | | 20=(3x)+(x=2) | | -50=c10− 58 | | 3x-37=-4x+12 | | 5(5a+5)=25 | | (x2)+(1.6)=12x | | -6x=48/2 | | 5x+2.5=3x | | 11+4x-5x=-3 | | -35+4x=-3x+28 | | 6x-13=-11 | | 11x=160 | | t3−4=4 | | t3− 4=4 | | 8m+-31=49 | | -51+5x=33-x |